Laser Ion Source Development for ISOL Systems at RIA Y. Liu, J.R. Beene, D.R. Schultz, D.W. Stracener, C.R. Vane Physics Division, Oak Ridge National Laboratory Oak Ridge, TN USA #### Laser Ion Source Based On Resonant Photoionization Ions of a selected element are produced via stepwise resonant photo excitations followed by ionization in the last transition. - highly selective - efficient - versatile -- applicable to about 80% of all the elements in the periodic table (ionization potential <10eV) ## **Develop New Ionization Schemes** | ₅₈ Ce | ₉₅ Pr | 60Nd | ₆₁ Pm | ₆₂ Sm | ₆₃ Eu | ₆₄ Gd | ₆₅ Tb | ₆₆ Dy | ₆₇ Ho | ₆₈ Er | ₆₉ Tm | ₇₀ Yb | ₇₁ Lu | |------------------|------------------|-----------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-------------------|-------------------|-------------------|-------------------| | 00 | - | 00 | 01 | 02 | 00 | 01 | 00 | 00 - | 01 | | | | - | | 771 | | | | , | | | - | | | _ | | | 1 . | | ₉₀ Th | ₉₁ Pa | ₉₂ U | ₉₃ Np | ₉₄ Pu | ₉₅ Am | ₉₆ Cm | ₉₇ Bk | ₉₈ FC | ₉₉ Es | ₁₀₀ Fm | ₁₀₁ Md | ₁₀₂ No | ₁₀₃ Lr | # Laser ion sources are being used or developed for on-line production of RIBs at several ISOL facilities **ISOLDE (CERN)** ISAC/TRIUMF **GSI** Institute of Spectroscopy (Troitsk) IRIS (Gatchina) **Mainz University** LISOL, Louvain-la-Neuve TIARA (Takasaki) Heavy Ion Research Facility (Lanzhou, China) #### **ISODE RILIS** Copper vapor laser pumped dye lasers Hot cavity interface > 20 RIBS provided with overall efficiencies of the order of 10% ## Areas in which improvements and developments can be made # Efficiency - Higher laser power in the ionizer cavity - Improved ion extraction - Development of ionization schemes utilizing autoionizing states instead of ionizing directly to the continuum - Fractionated ground-state population # Selectivity - Ionization via laser excitation competes with surface ionization in a hot cavity - Investigate schemes to ionize refractory elements that may be transported as molecules # Reliability and Maintenance - Use solid state pump lasers instead of copper vapor lasers - Use Ti:sapphire lasers to replace dye lasers (a gap in wavelength of 500-700 nm will result) #### Requirements for a new Laser Ion Source - High power - High repetition rate (> 10 kHz) - High reliability - Easy tunability - Reduction of consumables and maintenance - Cover a wide range of wavelengths - Capability for 2-step and 3-step ionization schemes # **Closing Comments** - This research can be accomplished at the Holifield Radioactive Ion Beam Facility (HRIBF) in an operating ISOL environment with both stable isotopes and shortlived radioactive isotopes - At ORNL, laser expertise exists in the atomic physics group and among some members of the group presently working in ion source development - Useful discussions have been initiated with Ulli Koester (ISOLDE) concerning what directions/problems a new laser ion source development project should focus on - The plan is not to develop new laser technology but to use state-of-the-art laser technology to improve the laser and ion source coupling, develop new ionization schemes, and develop a system that is reliable, efficient, easily tuned, and easy to maintain